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Abstract. We show that computing the crossing number of a graph
with a given rotation system is NP-complete. This result leads to a new
and much simpler proof of Hliněný’s result, that computing the crossing
number of a cubic graph (without rotation system) is NP-complete. We
also investigate the special case of multigraphs with rotation systems on
a fixed number k of vertices. For k = 1 and k = 2 the crossing number
can be computed in polynomial time and approximated to within a factor
of 2 in linear time. For larger k we show how to approximate the crossing
number to within a factor of

(
k+4
4

)
/5 in time O(mk+2) on a graph with

m edges.
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1 Introduction

Computing the crossing number is NP-complete, as shown by Garey and John-
son [5]. Hliněný recently showed, using a rather complicated construction, that
even determining the crossing number of a cubic graph is NP-complete [6], a
long-standing open problem [1].

We investigate a new approach to cubic graphs through graphs with rotation
systems. We show that determining the crossing number of a graph with a given
rotation system is NP-complete, and then prove that this problem is equivalent
to determining the crossing number of a cubic graph. This also gives a new
and easy proof that determining the minor-monotone crossing number (defined
in [2]) is NP-complete.

Graphs with rotation systems are of interest in their own right; we have en-
countered them several times during recent research projects [12,14,13]. Indeed,
at the core of our separation of the crossing number from the odd crossing num-
ber is a loopless multigraph on two vertices with rotation [13]. In Section 4 we will
see that the crossing number can be computed efficiently for one-vertex graphs
with rotation and at least approximated efficiently for loopless multigraphs on



two vertices (the problem is in polynomial time for two-vertex multigraphs but
requires linear programming [14]). We also show some interesting connections
to string matching problems. Finally, we give an approximation algorithm to
compute the crossing number of k-vertex multigraphs with rotation to within a
factor of O(k4). We do not know whether this problem can be solved exactly in
polynomial time.

2 NP- Hardness

Consider a graph drawn in the plane (or any orientable surface). The rotation
of a vertex is the clockwise order of its incident edges. A rotation system is the
list of rotations of every vertex. We are interested in drawings of a graph in the
plane with a fixed rotation system.

We also consider “flipped” rotations (previously seen in [13]). Given a rotation
of a vertex v, the flipped rotation reverses the cyclic order of the edges incident
to v.

Theorem 1. Computing the crossing number of a graph with a given rotation
system is NP-complete. The problem remains NP-complete if we allow the ro-
tation at each vertex to flip independently.

Proof. We adapt Garey and Johnson’s reduction from OPTIMAL LINEAR AR-
RANGEMENT to CROSSING NUMBER [5]. Given a graph G = (V, E), a linear
arrangement is an injective function f : V → 1, . . . , |V |, and the value of the
arrangement is computed as

∑

uv∈E

|f(u) − f(v)|.

Given G and k, deciding whether G allows a linear arrangement of value at most
k is NP-complete [5, GT42].

Let us fix a connected graph G = (V, E), with V = v1, . . . , vn, m = |E|, and k.
We may assume that n ≤ m. From G we construct an edge-weighted graph H
with fixed rotation system, as shown in Figure 1. The use of weighted edges
simplifies the construction; later we will replace each weighted edge by a small
unweighted graph, obtaining a simple graph H ′ with a fixed rotation system.
Note that for a fixed drawing of a weighted graph, a crossing of an edge of
weight k with an edge of weight l contributes kl to the crossing number.

We start with a cycle (u1, . . . , u4n), and a single vertex u0 connected to each
vertex on the cycle. We choose the edge-weights of this part of the graph so high
that it has to be embedded without any intersections.

For every 1 ≤ i ≤ 2n we connect ui to u4n+1−i by a path Pi of length 2 and
edges of weight w. Furthermore, we connect the midpoints of Pi and P2n+1−i by
a path Qi of length 3 with edges of weight w′, whose middle edge aibi has been
replaced by two edges of weight w′/2 (1 ≤ i ≤ n).

Finally, we encode G as follows: for each edge vivj ∈ E we add an edge from
ai to bj (with i < j, an arbitrary choice). The rotation of H is as shown in
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Fig. 1. The graph H

Figure 1. At ai, each edge from E is inserted into the rotation at ai between the
two ai, bi-edges of weight w′/2; we do likewise at every bi. The edges of E at ai

can be ordered arbitrarily (same at bi).
This concludes the description of H . We let k′ = n(n − 1)ww′ + kw′ + m2,

where w = 5m4 and w′ = 2m2. We claim that G allows a linear arrangement of
value at most k if and only if H (with the rotation system shown in the drawing)
has crossing number at most k′.

If G has a linear arrangement of value at most k, we can draw H using the
order of the vi in that linear arrangement to obtain a drawing of crossing number
at most k′ (the m2 term compensates for the potential pairwise crossings of the
edges in H that represent edges in E).

For the reverse implication, consider a drawing of H with crossing number
at most k′ = n(n − 1)ww′ + kw′ + m2. Then k′ < n2ww′ + m2w′ + m2, and



by choice of w and w′ this is at most 10m8 + 2m4 + m2 < w2. Hence, in our
drawing, no two edges of weight w intersect each other, and, therefore, the paths
Pi (1 ≤ i ≤ 2n) are drawn as shown in Figure 1.

Next, consider the modified paths Qi. Qi must intersect each of the paths
Pi+1 through P2n−i, contributing (2n−2i)ww′ to the crossing number. Summing
these values for i = 1, . . . , n, we observe a contribution of at least n(n − 1)ww′

by intersections between the Qi and the Pi to the crossing number. This leaves
k′ − n(n − 1)ww′ = kw′ + m2 < m2w′ + m2 = (w′/2)w′ + w′/2 < w′w′ < w′w
crossings, implying that there cannot be any further intersections between a
Qi and a Pi (since it would contribute w′w to the crossing number, more than
is left). By the same reasoning, we also do not have intersections between any
two Qi.

Finally, we want to argue that all the ai and bi lie between Pn and Pn+1. Since
Qn lies entirely between Pn and Pn+1 (as we argued earlier), so do an and bn.
Consider any ai or bi. As G is connected by assumption, there is a path from an

to ai using edges encoding G and edges of weight w′/2. If this path intersects
Pn or Pn+1, it contributes w or more to the crossing number. However, since
k′ − n(n − 1)ww′ = kw′ + m2 < m2w′ + m2 = 2m4 + m2 < 5m4 = w, this is not
possible. Therefore, ai and bi are also located between Pn and Pn+1.

In summary, the drawing of H looks as shown in Figure 1. This drawing
clearly indicates a linear arrangement f of G. An edge e = uv contributes at least
|f(u)−f(v)|w′ to the crossing number of H , so

∑
uv∈E |f(u)−f(v)| ≤ kw′+m2.

Since m2 < w, the value of the linear arrangement is at most k.
The last step is to replace each edge e of weight x by x parallel edges, and

then subdivide each of those edges: the effect is that e is replaced by a copy of
K2,x with the endpoints of e identified with the partite set of size 2. The new
edges are inserted in the rotation at where e was, and the new edges are ordered
as indicated in Figure 2. Thus we obtain an unweighted graph H ′ from H . Since
we can draw any of the parallel edges alongside whichever one is involved in the
smallest number of crossings, we may assume that an optimal drawing of H ′ has
all parallel edges routed in parallel; also, subdivisions do not affect the crossing
number. Therefore, cr(H ′) = cr(H), and H ′ is an unweighted graph with fixed
rotation system for which is it is NP-hard to determine the crossing number.

Note that the argument showing that the drawing of H looks as shown in
Figure 1 did not make any assumptions about the rotation at a vertex. Therefore,
even if we allow flipped rotations, we can still conclude that the drawing of H
yields a linear arrangement of value at most k. Consequently, computing the
crossing number of graphs with rotation systems remains NP-complete if we
allow rotations to flip.

Remark 1. The construction in the proof of Theorem 1 can be modified to work
for other crossing number variants, such as odd-crossing number, pair-crossing
number, and rectilinear crossing number (for which all edges of the graph have
to be realized as line segments).
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Fig. 2. Replacing an edge by parallel paths

3 Cubic Graphs

We can use Theorem 1 to prove that computing the crossing number of a cubic
graph is NP-complete. This was a long-standing open question that was solved
only recently by Petr Hliněný, using a rather complicated construction. The
idea of the proof is to replace each vertex of a graph with rotation system with
a hexagonal grid, simultaneously making the graph cubic and mimicking the
rotation system. (Hexagonal grids are used in Hliněný’s original proof as well.)

Theorem 2 (Hliněný [6]). Computing the crossing number of a 3-connected,
cubic graph is NP-complete.

Remark 2. The argument of Theorem 2 also works for straight-line drawings.
Combining this observation with Remark 1 shows that it is NP-hard to compute
the rectilinear crossing number of a cubic graph.

As Hliněný observes, Theorem 2 also implies that computing the minor-monotone
crossing number is NP-complete [6]. Another result, which follows immediately
(as observed in [3]) is that it is NP-hard to find a drawing of a directed graph in
which all incoming (and therefore all outgoing) edges at a vertex are consecutive
and which minimizes the crossing number.

Our Theorem 1 is in turn derivable from Hliněný’s result, as we will show in
the full version of the paper.

4 Parameterization

One way to parameterize the crossing number problem is by the number of ver-
tices of the graph. The question becomes interesting if we allow multiple edges
and loops. Without rotation, the problem is equivalent to computing the crossing
number of a weighted graph without multiple edges and loops, with the cost of an
intersection being the product of the weights of the edges involved: Given a graph
G = (V, E) with multiple edges and loops, note that in a crossing-number optimal
drawing any two edges with the same endpoints can be routed in parallel. If we
let G′ be the complete graph on V with edge weights w(uv) equal to the number
of edges in E between u and v, then the weighted crossing number of G′ equals
cr(G). Moreover, that weighted crossing number of G′ can be easily computed by
exhaustively trying all possible drawings in time O(2|V |2(log |E| + |V |2)).



The problem becomes nontrivial if the graph G is given with a rotation system
of its edges. In the following sections we discuss the cases of one and two vertices
connecting them with well-known problems such as determining the number of
inversions in a permutation and finding the edit distance of two cyclic words.
We also include a weak approximation result for the general case. We start by
investigating the case of two vertices.

4.1 Two Vertices

In this section we consider graphs on two vertices, allowing multiple edges, but
no loops. The crossing number of a two-vertex graph can be expressed as the
solution of an integer linear program whose relaxation can be used to compute
the optimal integer solution in polynomial time as we showed earlier [13].

Here we want to give a fast and simple 2-approximation algorithm for the
two-vertex case. To do so, we look at the crossing number problem as an edit-
distance problem on words. The edit distance between two words is the smallest
number of operations transforming one word into the other. There are numerous
variants of this problem depending on which operations are allowed and what the
associated costs are [15,9]. There are also several papers studying objects other
than words, such as trees and cyclic words (also known as necklaces) [10,11,7],
but it seems the particular variant we find needful here—allowing only swaps (at
unit cost) on cyclic words—has not so far been considered at all. A swap is the
transposition of two adjacent letters in a word. A cyclic word is the equivalence
class of a word under cyclic shifts (we will use the letter ρ to denote the cyclic
shift of a word by one position to the right). The last and first letter of a cyclic
word are considered adjacent. Let ds(u, v) be the smallest number of swaps
transforming u into v, where u and v are normal words. Similarly, let dρ

s(u, v) be
the smallest number of swaps transforming u into v allowing cyclic shifts at no
cost. Then dρ

s(u, v) is the swapping distance of the two cyclic words represented
by the words u and v. E.g. dρ

s(abcd, cdba) = 1, while ds(abcd, cdba) = 5.
Computing ds is easy (see [15]). Our goal is the computation of dρ

s(u, v).

Swapping distance of Cyclic Words
Instance: Two words u, v, integer k.
Question: Is dρ

s(u, v) ≤ k?

We do not know how hard this problem is in general; however, with the
restriction that the words contain each letter exactly once, we can solve the
problem. Indeed, in that case it is equivalent to computing the crossing number
of a graph G with rotation system on two vertices (details will appear in the
journal version).

We rephrase the restricted swapping-distance problem as follows: we can as-
sume that u = 123 · · ·m and v = σ(1)σ(2) · · · σ(m) for some permutation σ of
Zm (the cyclic group of m elements). Letting G be the 2-vertex multigraph de-
fined by the clockwise rotations u and vR, we define cr(σ) := cr(G). We call two
permutations σ, τ circular-equivalent if there exists a k such that σ(i) = τ(i+ k)
for all i ∈ Zn. Each equivalence class is a circular permutation (this corresponds



exactly to the cyclic words). We will use σ to represent a permutation as well as
the corresponding circular permutation. If σ and τ are circular equivalent, then
cr(σ) = cr(τ).

We next define a function c̃r on circular permutations σ which will be seen to
be related to the crossing number of the corresponding 2-vertex multigraph G.
Consider a fixed permutation τ . We wish to consider “forward” and “backward
distance” from i to τ(i) in Zm, as if the the elements in the list τ were placed
clockwise along a circle with the same distance between each consecutive pair
(including τ(m) and τ(1)). We define d+(i) to be τ(i)− i mod m; note that 0 ≤
d+(i) < m. Also let d−(i) = i − τ(i) mod m and let d(i) = min(d+(i), d−(i)).
Note that if the aforementioned circle has circumference m, then d+(i) measures
the clockwise distance along the circle from i to τ(i), and d−(i) measures the
counterclockwise distance from i to τ(i). Finally, we define d(τ) to be the sum
of d(i) over 1 ≤ i ≤ m.

For a circular permutation σ, let c̃r(σ) be the minimum of d(τ) over all τ ≡ σ.
Equivalently, c̃r(σ) = min1≤i≤m d(σ ◦ ρi), where ρi(j) = i + j for all 1 ≤ i ≤ m.

We claim that c̃r approximates the cyclic swapping distance of two words to
within a factor of 2. We leave the proof to the journal version.

Theorem 3. For a 2-vertex loopless multigraph G represented by a circular
permutation σ,

cr(G) ≤ c̃r(σ) ≤ 2 cr(G).

Remark 3. The bounds of Theorem 3 are asymptotically optimal: for σn :=
(1 2)(3 4) · · · (2n−1 2n) we have c̃r(σ) = 2n and cr(G) = n; for the lower bound
consider τn := (1 n) (as a permutation of numbers 1, . . . , 2n), then c̃r(τn) =
2n − 2 and cr(G) = 2n − 3.

Remark 4. We have seen that the crossing number of a two-vertex graph equals
the swapping distance of two cyclic words. If instead of cyclic words we consider
normal words, the swapping distance still equals the crossing number of a two-
vertex graph where both vertices lie on the boundary of a disk (and all the edges
are within the disk). In that context, the analogue of Theorem 3 is known as
Spearman’s Footrule and was first proved by Diaconis and Graham [4].

Theorem 3 gives us a fast and easy way to approximate cr(G) for a 2-vertex
multigraph with rotation system. Computing c̃r(σ) from the definition can be
done in quadratic time; however, this can easily be improved by first sorting the
d(i) (which can be done in linear time) and then trying all rotational shifts ρj

of σ. We keep the optimal shifts sorted by value and distinguish between two
different types of optimal shift: forward and backward. Updating the optimal
shift and its direction might not be constant time for adding a single shift, but
an amortized analysis shows that the whole algorithm can be made to run in
linear time.

Corollary 1. The crossing number of a 2-vertex loopless multigraph with rota-
tion system can be approximated to within a factor of 2 in linear time.



4.2 One Vertex

Given a graph with a rotation system on a single vertex (with loops), it is quite
straightforward to compute its crossing number in quadratic time.

In contrast, a linear time algorithm for the one-vertex case would come as
a surprise, since the problem contains as a special case a well-studied problem:
computing the number of inversions of a permutation. Given a permutation π
over {1, . . . , n}, an inversion of π is a pair (i, j) such that i < j and π(i) >
π(j). It is well-known that the number of inversions of a permutation π equals
ds(123 . . . n, π(1)π(2) . . . π(n)) (see, for example [8, Section 5.1.1]). The best-
known algorithms for either problem run in Θ(n log n).1

The inversion problem is easily encoded as a crossing number problem on a
single vertex: simply let the rotation at the vertex be 12 . . . nπ(n)π(n − 1) . . .
π(2)π(1).

However, the one-vertex case can also be considered a special case of the
two-vertex case (split the vertex into two and connect the two vertices with
a large number of neighboring parallel edges). Hence we can approximate the
crossing number of a one-vertex graph and therefore the number of inversions
of a permutation in linear time to within a factor of 2 using our approximation
algorithm. As we mentioned in Remark 4, this result is known as Spearman’s
Footrule.

We can compute the crossing number of a one-vertex graph exactly in time
Θ(n log n), which extends the algorithm for computing the number of inversions
of a permutation. The proof will appear in the journal version.

Theorem 4. The crossing number of a one-vertex graph with rotation system
can be computed in time O(n log n).

4.3 Several Vertices

There is little we can say at this point about how hard it is to compute the
crossing number of a graph with a rotation system on a fixed number k of
vertices when k ≥ 3. Using results from a previous paper [12], however, we can
give at least an approximation result. In this section we allow both loops and
multiple edges.

Theorem 5. We can approximate the crossing number of a multigraph G =
(V, E) with rotation system on k vertices to within a factor of

(
k+4
4

)
/5 in time

O(mk+2) where k = |V | and m = |E|.

In [12] we showed that cr(G) ≤ ocr(G)
(

k+4
4

)
/5, where ocr(G) is the odd-crossing

number of G, that is, the smallest number of pairs of edges that cross an odd
number of times in any drawing of G. In fact, the proof applies to a multigraph
G with rotation system π, yielding cr(G, π) ≤ ocr(G, π)

(
k+4
4

)
/5. The proof works

by choosing a sequence of k edges e1, . . . , ek and contracting G along those edges
1 See [8, Exercises 5.1.1-6 and 5.2.4.-21]. Wagner’s linear time algorithm [15] for com-

puting the swapping distance of words is wrong.



obtaining a graph G′ with rotation system π′ on a single vertex. For graphs on
a single vertex crossing number and odd crossing number are the same, hence,
cr(G′, π′) = ocr(G′, π′). Furthermore, the sequence of edges is chosen such that
cr(G′, π′) ≤ ocr(G, π)

(
k+4
4

)
/5. In other words, ocr(G, π) ≥ cr(G′, π′)/(

(
k+4
4

)
/5).

The redrawing procedure of the proof establishes that ocr(G, π) ≤ ocr(G′, π′).
Introducing c := ocr(G′, π′) allows us to summarize the discussion as

c/(
(

k + 4
4

)
/5) ≤ ocr(G, π) ≤ c.

Since ocr(G, π) ≤ cr(G, π) ≤ ocr(G, π)
(

k+4
4

)
/5, we conclude that

c/(
(

k + 4
4

)
/5) ≤ cr(G, π) ≤ c

(
k + 4

4

)
/5.

Now c can be computed in time O(m2) using the trivial algorithm for one-vertex
graphs if we know G′ and π′. The only remaining problem is that we do not know
the sequence of edges that determines G′ and π′. Hence we have to try all possible
sequences, giving a running time of O(mk+2).
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